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The ability to determine the structure of a sample at atomic resolution is crucial

for the development of nanotechnology and materials science. Consequently,

structure retrieval must become a quantitative rather than a qualitative exercise.

A method to retrieve the projected potential of a crystalline sample by inversion

from an exit-surface wavefunction in high-resolution electron microscopy is

proposed. This method accounts for both multiple scattering and absorption.

1. Introduction

Recent developments in image interpretation methods in

high-resolution electron microscopy allow the reconstruction

of the exit-surface wavefunction (ESWF) of a crystalline

sample at atomic resolution. The maximum-likelihood (MAL)

method (Coene et al., 1996) and the iterative wavefunction

reconstruction (IWFR) method (Allen et al., 2004a,b) recon-

struct the ESWF from a series of images taken at different

defocus values. These approaches also correct for coherent

and incoherent aberrations in the microscope optics. However,

at atomic resolution, images suffer the well known contrast

problem and this is a barrier to quantitative structure retrieval

(Hÿtch & Stobbs, 1994; Boothroyd et al., 1995; Boothroyd,

1998). The contrast in experimental images is typically a factor

(called the Stobbs factor) of three to five times less than that

predicted by simulations (Howie, 2004).

There is much speculation as to the cause of the lack of

contrast in atomic resolution images. Inelastic scattering, and

in particular thermal diffuse scattering (TDS), has been

suggested as the major reason for the reduction in contrast

(Lehmann et al., 2002). That being the case, the side band of an

off-axis holography diffraction pattern should not be affected

by the contrast problem as it contains only information from

scattering events with an energy change of less than 10�15 eV

(Van Dyck et al., 2000), which excludes all inelastic scattering

including TDS. The center band is affected by inelastic scat-

tering, as is the case in high-resolution imaging. ESWFs can be

obtained directly from the side and center bands (Orchowski

et al., 1995) and the contrast of the corresponding images can

vary by as much as a factor of five (Lehmann et al., 2002). We

note, however, that other authors have not found such a large

factor in similar circumstances (Boothroyd & Dunin-

Borkowski, 2004). They suggest that inelastic scattering alone

cannot explain the contrast problem in high-resolution

imaging and that scattering from amorphous surface layers is

also an important contribution.

Assuming the contrast problem can be circumvented, the

important problem of obtaining the electron–object interac-

tion can be tackled to obtain a quantitative measure of the

structure of the object (Van Aert et al., 2002), which is non-

trivial when dynamical (multiple) scattering is significant. In

particular, we wish to obtain the projected potential seen by

the incoming electron beam. We propose an exact inversion

scheme based on the solution of a set of non-linear equations

to obtain the projected structure from the ESWF for a single

orientation of the incident beam. The effect of inelastic scat-

tering is accounted for and the inelastic scattering potential

(mainly due to TDS) is also reconstructed. To illustrate the

inversion method, we consider a model case of electrons

incident on a thin silicon slab. The effect of a post-specimen

aperture (which limits resolution in the image plane) and noise

on the accuracy of the retrieved structure is investigated.

In the absence of strong dynamical scattering effects,

approximate methods have been used to perform inversion

from a single ESWF to obtain the projected potential. These

methods include the weak-phase-object approximation and

the pseudo-weak-phase-object approximation (Li & Tang,

1985). An iterative technique was developed to overcome the

problems of image interpretation in the presence of dynamical

scattering (Gribelyuk, 1991). This method was implemented to

retrieve the elastic potential and is limited by sample thick-

ness. A method based on the reversal of the multislice algor-

ithm was proposed (Beeching & Spargo, 1993) and its

limitations in terms of sample thickness investigated using a

Bloch-wave analysis (Beeching et al., 1994). A different

approach considered an approximate channeling method (Op

de Beeck & Van Dyck, 1996; Van Dyck & Geuens, 2002). This

method works for large sample areas but is limited by thick-

ness and is more successful for light atomic columns. Two

inversion methods have been proposed that are based on

changing an experimental parameter. The first is based on the

principle that for small changes in the incident beam voltage

the difference in diffraction intensities is proportional to the

crystal potential (Rez, 1999). The second involved recovering

the potential from the ESWFs obtained at two different

thicknesses (Allen et al., 2001). Both these methods are diffi-

cult to implement in practice.

Two methods based on optimization algorithms have been

proposed recently. A scheme that uses simulated annealing to



compare an ESWF obtained from a trial projected potential

with that of an experimental ESWF (Lentzen & Urban, 1996)

was found to converge to the correct solution so long as the

sample was not too thick. A later paper by the same authors

uses a maximum-likelihood refinement (Lentzen & Urban,

2000). Two different approximations were used to obtain a

starting guess for the minimization algorithm. The first was the

weak-phase-object approximation. This failed to converge to

the correct solution for test samples of thickness 100 Å. The

second was an approximate channeling method. This

improved the starting guess so that the routine converged for

the 100 Å thick test samples. A disadvantage of both these

methods is that optimization routines can fall into local

minima and hence appear to converge, but to an incorrect

solution. The solution of a set of non-linear equations, as is the

case for the inversion method proposed here, has the advan-

tage that it is always global in approach. Each step in non-

linear equation solving algorithms refines the solution set in

such a way that all equations simultaneously converge towards

the solution, thus ameliorating the problem of local minima.

Several other authors have considered refinement tech-

niques to determine structure factors. Many authors use

convergent-beam electron diffraction (CBED) patterns, for

example, Zuo & Spence (1991), Tsuda & Tanaka (1995) and

Vincent & Exelby (1995). Standard electron diffraction

patterns can be used in tandem with the well known multislice

method and least-squares-fitting procedures to refine struc-

tural parameters (Sha et al., 1993; Jansen et al., 1998).

An approach where the inversion step can be reduced to the

solution of a set of linear equations, thus ensuring a unique

solution, has been proposed (Allen et al., 1998). However, a

through-tilt series of measurements is then needed to obtain

the ESWFs for several orientations of the incident beam

(Allen et al., 1998; Spence, 1998), which is difficult to imple-

ment experimentally.

2. Inversion from a single ESWF

The scattering matrix relates the wave incident on the crystal

to that at the exit surface. For a plane wave incident in an exact

zone-axis orientation and normalized to unity, we can write

(Allen et al., 2000)
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where the indices on the elements of the scattering matrix S

refer to reciprocal-lattice vectors in a plane perpendicular to

the zone axis. It is clear that the Fourier coefficients vg of the

ESWF are directly related to the central column of S by

vg ¼ Sg;0. In an N-beam Bloch-wave formulation, S is an

N � N complex matrix. Obtaining the ESWF for the exact

zone-axis orientation provides us with the central column of S.

The remaining elements of S can be obtained via a series of

tilts of the incident beam from the principal orientation by a

reciprocal-lattice vector g, i.e. by changing the position of the 1

in the column matrix on the right-hand side of equation (1).

The information about the structure of the sample is

contained in the structure matrix A, which we can write in the

form (Allen et al., 2000)
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where Wg are the Fourier coefficients of the optical potential

for the scattering of electrons by the crystal and for an exact

zone-axis orientation

Qg ¼ �g2
þ iU 00: ð3Þ

In this equation, U00 is the mean absorption. The scattering

matrix S can be obtained from the structure matrix A via

SðfWhgÞ ¼ exp
i�t

K
A

� �
; ð4Þ

where t is the thickness of the specimen and K is the wave-

number of the incident electron corrected for refraction, i.e.

K2 ¼ k2 þ U0, with k the wavenumber in vacuum and U0 the

mean inner potential. The scattering matrix S is a function of

the set of Fourier coefficients fWhg in the structure matrix A.

Provided we have all columns in S, equation (4) can be

inverted to obtain the structure as follows:

A ¼
K

i�t
lnS: ð5Þ

An ambiguity arises in this equation since the evaluation of

the natural logarithm of the matrix S involves taking the

natural logarithm of the complex eigenvalues of S. This can be

resolved by taking into account the known diagonals and

fundamental symmetries in the A matrix, leading to a set of

linear equations that can be solved using single-value

decomposition (Allen et al., 2000). This inversion easily

provides a unique solution; however, there are problems

associated with its practical implementation. Taking data at

many accurately determined tilts of the incident beam is

technically difficult, with a focal series required for ESWF

reconstruction at each tilt. In addition, taking such large

amounts of data may cause radiation damage to the sample.

Retrieval using data at only one orientation of the incident

beam would be advantageous. This means we need to proceed

knowing only the central column of the scattering matrix S.

Assuming that we are working in an N-beam approximation,

we have a set fSg;0g of N complex pieces of data at our disposal
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to effect the inversion. Let us first consider this in the single

scattering approximation, in which case

A �
K

i�t
ðS � IÞ; ð6Þ

where I is the identity matrix. If the mean inner potential U0

is not known, then we can make the approximation K � k in

the above equation. This is an excellent estimate since, for

example, at an incident energy of 300 keV, K ¼ 50:797 Å�1

and k ¼ 50:795 Å�1.

Using equations (1) and (2) in combination with equation

(6), we can invert to obtain the Fourier coefficients of the

potential in the central column of the A matrix via

Wg �
K

i�t
Sg;0; g 6¼ 0; ð7Þ

assuming t has been independently determined, for example

by analysis of CBED patterns (Kelly et al., 1975; Allen, 1981).

In practice, Sg;0 cannot be directly obtained from vg since the

intensity of the incident beam is not accurately known [we

have assumed it is normalized to one in equation (1)].

Furthermore, the ESWF can only be determined up to an

arbitrary overall phase constant �. These problems affect the

recovered ESWF regardless of the method used to obtain it.

To see how these two problems may be circumvented, we write

the Fourier coefficients of the ESWF obtained in practice, in

terms of those in equation (1), in the form

v0g ¼ �vg expði�Þ; ð8Þ

where � is a normalization constant. We then obtain Sg;0,

required for the inversion in equation (7), from

Sg;0 ¼ S0;0

vg

v0

¼ S0;0

v0g

v00
� 1�

�t

K
U00

� � v0g

v00
: ð9Þ

Assuming that t is known and that we have an estimate for the

mean absorption U00, we can calculate Sg;0 in the single scat-

tering approximation, correct in both magnitude and phase.

Single scattering usually applies for small thicknesses, so that

the term in brackets is approximately unity and explicit

knowledge of U 00 is not essential.

Let us now generalize this to the case of multiple scattering.

As before, we start with an ESWF which in principle has been

obtained from experiment. From the Fourier coefficients of

the ESWF, we construct the N � 1 complex quantities

Sg;0=S0;0. The central column of the A matrix also contains

N � 1 complex Fourier coefficients. Fourier coefficients not in

the central column of A are higher-order Fourier coefficients

of the potential and are assumed to be small enough to be

neglected. We illustrate this procedure in Fig. 1, which shows

the indexing of the Fourier coefficients for the [110] zone axis

in silicon in an N ¼ 13 beam approximation. There are

N � 1 ¼ 12 complex Fourier coefficients in the central column

of the structure matrix that are retained elsewhere. Elements

which, by indexing, are found to be higher-order Fourier

coefficients are indicated by a single 0 in Fig. 1.

We can write down the following N � 1 non-linear equa-

tions in terms of the set of N � 1 unknown complex Fourier

coefficients fWhg:

FgðfWhgÞ ¼
Sg;0

S0;0

� �exp

�
Sg;0ðfWhgÞ

S0;0ðfWhgÞ

� �theory

¼ 0; ð10Þ

where the ratio ½Sg;0ðfWhgÞ=S0;0ðfWhgÞ�
theory can be extracted

from the scattering matrix SðfWhgÞ that is evaluated using

equation (4) (where, as discussed previously, we may need to

use the approximation K � k). These non-linear equations

can be solved using standard routines, for example those based

on Broyden’s method. This method is a multidimensional

generalization of the one-dimensional secant method (Press et

al., 1986; Kelly, 1995). We wish to emphasize that this is not an

optimization procedure. One might be tempted to define a

master function FðfWhgÞ, which is the sum of the squares of

the individual functions FgðfWhgÞ, is positive definite and has a

global minimum at the roots of the non-linear equations.

However, such a procedure can come to rest on local or global

minima without discretion. The reason for this is that a

minimization routine can ‘go downhill’ by a dominant

decrease in one term in the master function. Each iteration in

a multidimensional root-finding method requires that all

N � 1 equations simultaneously head towards a better solu-

tion. Hence the formulation of this problem in terms of N � 1

non-linear equations in terms of N � 1 unknown Fourier

coefficients of the optical potential is significant. However,

despite the robustness of Broyden’s method, it does not

necessarily guarantee a solution. As a starting estimate for the

solution to the set of non-linear equations, we can use a single

scattering approximation.

3. Model inversions

3.1. No aperture and no noise

As has been done by the authors whose methods are

discussed in the Introduction (Gribelyuk, 1991; Beeching &

Spargo, 1993; Lentzen & Urban, 1996; Op de Beeck & Van
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Figure 1
The structure of the A matrix for silicon along the [110] zone axis in an
N ¼ 13 beam approximation. Only elements that occur in the central
column are retained elsewhere and higher-order coefficients are assumed
to be zero (those indicated by a single 0).



Dyck, 1996; Rez, 1999; Lentzen & Urban, 2000; Allen et al.,

2001), the inversion method proposed here will be illustrated

using simulated data. The method was tested for a variety of

simulated specimens. The two cases shown here are silicon and

silicon nitride, the latter having an hexagonal symmetry. The

effect of a post-specimen aperture and noise in the ESWF on

the retrieved potential will also be considered later.

We have simulated a focal series of images using the Bloch-

wave method for 300 keV electrons incident on a 120 Å thick

slab of silicon along the [110] zone-axis direction. With

N ¼ 157, there are 156 complex Fourier coefficients of the

optical potential in the central column of the A matrix.

Inelastic scattering is assumed to arise solely from TDS and

was calculated using the Einstein model (Allen & Rossouw,

1989; Bird & King, 1990). The projected potential for elastic

scattering [Fourier coefficients Ug ¼ ðWg þW��gÞ=2] is shown

in Fig. 2(a). That for inelastic scattering [Fourier coefficients

Ug0 ¼ ðWg �W��gÞ=2i] is shown in Fig. 2(b). A focal series of

images for a crystal of thickness t ¼ 120 Å is shown in Fig.

2(c). The defocus value of each image is given in the figure, the

negative values denoting underfocus.

The IWFR (Allen et al., 2004a) method was applied to this

focal series to produce the ESWF shown in Fig. 2(d), displayed

in the form of an image and phase map. The phase map shown

has values approximately 0.2 rad greater than those of the

correct ESWF, i.e. � � 0:2 rad in equation (8). At this stage in

our discussion, let us assume that we know the flux of the

incident beam and that jS0;0j (� 0:5) has been determined

from the diffraction pattern and, initially, that S0;0 is real. (We

will not make the assumption that jS0;0j is known in xx3.2 and

3.3, where we consider more realistic experimental situations.)

We then estimate ½Sg;0ðfWhgÞ=S0;0ðfWhgÞ�
theory using the single

scattering approximation equation (7). The elastic and

inelastic scattering potentials corresponding to this starting

point are shown in Figs. 2(e) and 2( f), respectively. We have

assumed that W0 ¼ 0, which we expect to essentially shift the

elastic and inelastic potentials shown by U0 and U00, respec-

tively, but notwithstanding this the agreement with the input

potentials is not good.

By solving the non-linear equations, equation (10), we

recover not only the input elastic potential, as shown in Fig.

2(g), but also the inelastic scattering potential, as shown in Fig.

2(h). These results are in excellent agreement with the starting

model potentials except that, as revealed by closer inspection,

the elastic potential is shifted downwards by � 14 eV and the

inelastic potential by � 0:1 eV, U0 and U00 having once again

been assumed to be zero, since they are not determined in the

inversion. In principle, both U0 and U00 could be determined

independently. The single scattering approximation provides a

satisfactory starting guess for the non-linear equation solver

we used (based on Broyden’s method) out to around 150 Å.

Thereafter, a better guess, such as the channeling approach

(Lentzen & Urban, 2000), is needed.

As the thickness of the sample must be determined inde-

pendently, it is important to demonstrate the robustness of the

method if the thickness is not known accurately. Fig. 3(a)

shows that there is little change in the elastic potential
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Figure 2
The input (a) elastic and (b) inelastic components of the projected
potential for silicon with 300 keV electrons incident along the [110] zone-
axis direction for a thickness of 120 Å. (c) A focal series of images
obtained using the direct Bloch-wave method. The defocus values are
shown under the images (the negative values indicate underfocus). (d)
An ESWF obtained from the IWFR method. Results are shown for the
reconstruction of the (e) elastic and ( f ) inelastic components of the
projected potential using the single scattering approximation and the (g)
elastic and (h) inelastic components of the projected potential using the
non-linear equation solving inversion method.



obtained from the ESWF if the thickness is varied by as much

as 20 Å either side of the nominal value of 120 Å. However,

Fig. 3(b) shows that the inelastic potential cannot be retrieved

with accuracy unless the thickness is known precisely.

The second example shown is that of �-Si3N4. The focal

series for this example was simulated in the same manner as

the first with 300 keV electrons incident on a 100 Å thick slab

along the [0001] zone-axis direction. With N ¼ 97, there are 96

complex Fourier coefficients of the optical potential in the

central column of the A matrix in this case.

The components of the projected potential for elastic

scattering and inelastic scattering are shown in Figs. 4(a) and

4(b), respectively. The five images in the focal series are shown

in Fig. 4(c). As previously described, the IWFR method was

applied to the focal series to produce the ESWF shown in Fig.

4(d), displayed as an image and phase map. A starting guess

for the potential was generated using the single scattering

approximation and the elastic and inelastic scattering poten-

tials are shown in Figs. 4(e) and 4( f). Once again, the non-

linear equations are solved to obtain the elastic and inelastic

potentials shown in Figs. 4(g) and 4(h), which show excellent

agreement with the input potentials shown in the same figure.

Closer inspection reveals that there is a shift of� 0:1 eV in the

inelastic potential, for the same reason there was a similar shift

in the case of Si.
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Figure 3
A measure of the standard deviation, minimum and maximum of the
projected potential obtained from the ESWF using the non-linear
equation solving inversion method for an Si sample of nominal thickness
120 Å if the thickness is not precisely known and varied within the range
shown. Results are shown for the (a) elastic and (b) inelastic components
of the projected potential.

Figure 4
The input (a) elastic and (b) inelastic components of the projected
potential for �-Si3N4 with 300 keV electrons incident along the [0001]
zone-axis direction for a thickness of 100 Å. (c) A focal series of images
obtained using the direct Bloch-wave method. The defocus values are
shown under the images (the negative values indicate underfocus). (d)
An ESWF obtained from the IWFR method. Results are shown for the
reconstruction of the (e) elastic and ( f ) inelastic components of the
projected potential using the single scattering approximation and the (g)
elastic and (h) inelastic components of the projected potential using the
non-linear equation solving inversion method.



3.2. Aperture and no noise

Let us now assume that the ESWF for Si in x 3.1 is obtained

from a focal series of images that are modified by an objective

aperture. The simulated focal series of images is shown in Fig.

5(a). The modified ESWF shown in Fig. 5(b) is obtained by

applying the IWFR method (Allen et al., 2004a) discussed

earlier.

We no longer assume that jS0;0j is known. The Sg;0 in the

single scattering inversion equation (7) are calculated from

equation (9) taking S0;0 ¼ 1. The resultant elastic projected

potential is shown in Fig. 5(c) and the inelastic potential in Fig.

5(d). The non-linear equation solving inversion method

proceeds as before by finding the roots of the set of equations

defined by equation (10). The results are shown in Fig. 5(e) for

the elastic potential and Fig. 5( f) for the inelastic potential.

Both components of the potential are less resolved than the

result obtained prior to the application of the aperture. The

elastic component is damped down but the inelastic compo-

nent has increased in size, confirming that the aperture is

effectively an absorption mechanism.
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Figure 5
(a) Input focal series of images for Si as described in the text (a 14.6 mrad
aperture has been applied). The defocus values are shown under the
images (the negative values indicate underfocus). (b) The ESWF
obtained by the IWFR method when applied to the focal series. The
intensity range and phase range (in radians) are shown. Results are
shown for the reconstruction of the (c) elastic and (d) inelastic
components of the projected potential using the single scattering
approximation and the (e) elastic and ( f ) inelastic components of the
projected potential using the non-linear equation solving inversion
method.

Figure 6
(a) Input focal series of images for �-Si3N4 (a 12.8 mrad aperture has been
applied). The defocus values are shown under the images (the negative
values indicate underfocus). (b) The ESWF obtained by the IWFR
method when applied to the focal series. The intensity range and phase
range (in radians) are shown. Results are shown for the reconstruction of
the (c) elastic and (d) inelastic components of the projected potential
using the single scattering approximation and the (e) elastic and ( f )
inelastic components of the projected potential using the non-linear
equation solving inversion method.



The effect of an aperture for the �-Si3N4 case is shown in

Fig. 6. The focal series of images in Fig. 6(a) has been modified

by an aperture of size 12.8 mrad and the ESWF retrieved using

the IWFR method is shown in Fig. 6(b). Starting from the

single scattering approximation shown in Figs. 6(c) and 6(d),

we obtain the elastic potential shown in Fig. 6(e), which is

damped down by the aperture (but less than for the Si

example), and the inelastic potential shown in Fig. 6( f), which

once again illustrates the absorptive nature of the aperture.

3.3. Aperture with noise

To test the effects of noise on the outcome of this method,

we used the focal series of five Si images in x3.2, shown in Fig.

5(a). Noise was added to the focal series by assigning a

number of counts to each pixel assuming that the maximum

intensity in the images corresponded to 400 counts. This

corresponds to noise at the level of 5% for maximum intensity

(with larger errors, of course, for all other pixels). The statis-

tical errors at each pixel were assigned using a random deviate

drawn from a Poisson distribution with mean corresponding to

the noise-free number of counts for a given pixel (Press et al.,

1986). For example, the �f ¼ �1900 Å image in the focal

series is shown in Fig. 7(a) prior to the addition of noise and

Fig. 7(b) after the addition of noise. The ESWF was then

retrieved using the IWFR method and the image is shown in

Fig. 7(c) and the phase map in Fig. 7(d).

After applying the non-linear equation solving inversion

method, we obtain a result that does not vary significantly

from the result obtained prior to the inclusion of noise. In fact,

there is no discernible difference from the results shown in

Figs. 5(e) and 5( f) on the scale of these figures.

We also tested the effects of noise on the �-Si3N4 case study

by applying noise, in the same way as for the Si case, to the

focal series of images shown in Fig. 6(a). For comparison, the

�f ¼ �1900 Å image in the focal series is shown in Fig. 8(a)

prior to the addition of noise and Fig. 8(b) after the addition of

noise. The ESWF was then retrieved using the IWFR method,

as before, and the image is shown in Fig. 8(c) and the phase

map in Fig. 8(d). As in the case of Si, there was no discernible

difference from the results shown in Figs. 6(e) and 6( f) on the

scale of these figures.

4. Conclusions

We have discussed the importance of quantitative structure

retrieval, especially in cases where dynamical scattering is

significant. The lack of contrast in atomic resolution experi-

mental images when compared to the best theoretical simu-

lations remains a major barrier to quantitative structure

interpretation, although off-axis electron holography promises

to ameliorate this problem (Howie, 2004). Provided that this

barrier can be overcome, the inversion method described in

this paper is a readily implementable procedure for retrieving

both the elastic and inelastic projected potentials of a crys-

talline sample from an ESWF obtained under dynamical

conditions for a single orientation of the incident beam.
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